Riepilogo puntate precedenti

- Abbiamo definito cos'è un sistema
- Abbiamo definito cos'è un automa
- Realizziamo un automa
 - Mealy
 - Moore

Transizione degli stati/1

- Descrive il passaggio da uno stato all'altro
- f: $VI \times S \rightarrow S$
- Righe: Stati S = {S1, S2,...,Sn}
- Colonne: valore degli ingressi VI={I1,I2,...,Im}

- Se all'istante t è nello stato Sh e diamo come input lk
- → All'istante t+1 lo stato sarà Sh,k
- → Abbiamo la descrizione dello stato

Transizione degli stati/2

- Righe: Stati S = {S1, S2,...,Sn}
- Colonne: valore degli ingressi VI={I1,I2,...,Im}

	I_1	I_2		I_k		I_{M}
S_1	$S_{1,1}$	$S_{1,2}$	•	$S_{1,k}$	•	$S_{1,M}$
S_2	$S_{2,1}$	$S_{2,2}$	•	$S_{2,k}$	•	$S_{2,M}$
		•	•	• •	•	•••
S_h	$S_{h,1}$	$S_{h,2}$	•••	$S_{h,k}$	• • •	$S_{h,M}$
•••		•••			• • •	
S_N	$S_{N,1}$	$S_{N,2}$	•••	$S_{N,k}$	• • •	$S_{N,M}$

Trasformazione delle uscite/1

Automa di Mealy

- Descrive l'uscita a partire da ingresso e stato
- Righe: Stati S = {S1, S2,...,Sn}
- Colonne: valore degli ingressi VI={I1,I2,...,Im}
- Celle: Uscite Un,m

- Se all'istante t è nello stato Sh e diamo come input lk
- → All'istante t l'uscita sarà Uh,k
- → Abbiamo la descrizione dell'uscita

Trasformazione delle uscite/2

Automa di Mealy

- Righe: Stati S = {S1, S2,...,Sn}
- Colonne: valore degli ingressi VI={I1,I2,...,Im}
- Celle: Uscite Un,m

	I_1	I_2		I_k		I_{M}
S_1	$U_{1,1}$	$U_{1,2}$	•	$U_{1,k}$	•	$U_{1,M}$
S_2	$U_{2,1}$	$U_{2,2}$	•	$U_{2,k}$	•	$U_{2,M}$
S_h	$U_{h,1}$	$U_{h,2}$	•••	$\mathbf{U}_{\mathtt{h},\mathtt{k}}$	•••	$U_{h,M}$
•••	•••	•••	•••	•••	•••	•••
S_N	$U_{N,1}$	$U_{N,2}$		$U_{N,k}$		$U_{N,M}$

Tabelle Trasformazione delle uscite/3 Automa di Moore

- Descrive l'uscita a partire dallo stato
- Righe: Stati S = {S1, S2,...,Sn}
- Colonne: Uscite U={U1,U2,...,Um}

- Se all'istante t è nello stato Sh
- → All'istante t l'uscita sarà Un
- → Abbiamo la descrizione dell'uscita

Trasformazione delle uscite/4

Automa di Moore

- Descrive l'uscita a partire dallo stato
- Righe:

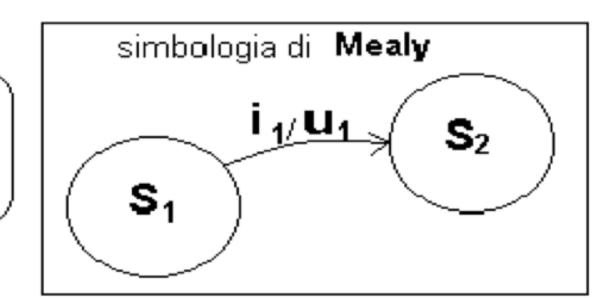
Stati $S = \{S1, S2,...,Sn\}$

Colonne:

Uscite U={U1,U2,...,Um}

	$oldsymbol{U}$
S_1	U_1
S_2	U_2
	• • •
S_h	U_{h}
•••	• • •
S_N	U_{N}

Diagrammi degli stati/1


E' un grafo orientato

- i cui nodi rappresentano gli stati
- ed i cui rami rappresentano le transizioni da uno stato all'altro
- Sui rami si indicano gli ingressi che determinano la transizione.
- Automi di Mealy: uscite sui rami
- · Automi di Moore: uscite nei nodi

Diagrammi degli stati/2 Mealy

automa improprio

In un automa improprio l'uscita dipende sia dallo stato che dall'ingresso

Diagrammi degli stati/3 Moore

automa proprio

In un automa proprio l'uscita dipende solo dallo stato

Realizzare un Automa

Studiamo il comportamento logico

- Cosa deve fare l'automa?
- Individuazione dei seguenti insiemi:
 - I insieme delle variabili di ingresso
 - VI insieme dei valori di ingresso
 - U insieme delle variabili di uscita
 - VU insieme dei valori di uscita
 - S insieme degli stati
- Tabelle e/o diagramma

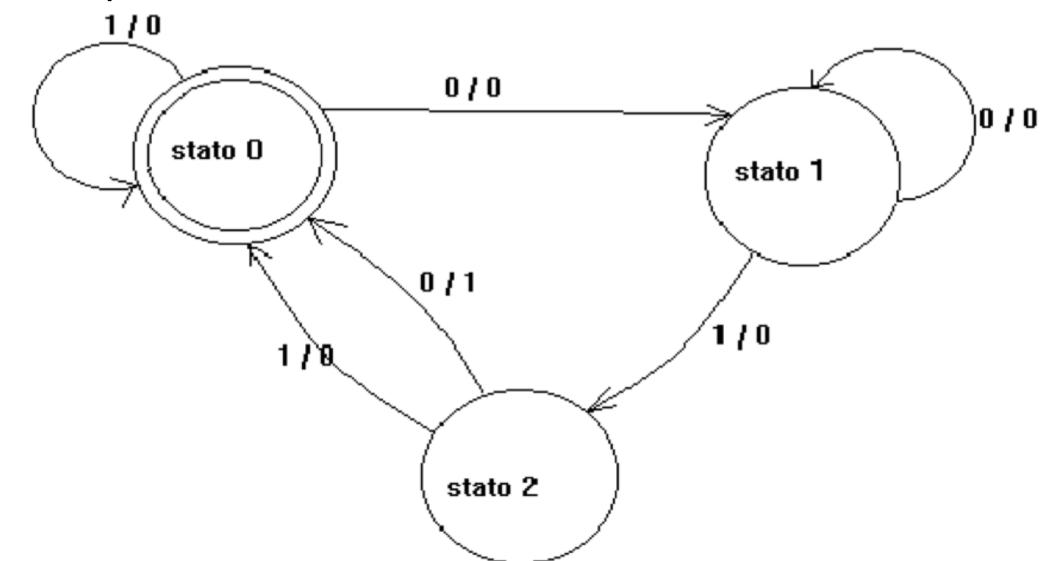
Proseguiamo:

Automi riconoscitori

Automi Riconoscitori/1

- Devono determinare se una certa sequenza in ingresso appartiene o no ad una o più sequenze assegnate dette sequenze accettabili.
- Importantissimi perché usati in programmazione per if, while, write...

Automi Riconoscitori/2


Hanno:

- Un'unica variabile di ingresso: carattere
- Valori di ingresso: caratteri ammissibili
 - Numero di telefono: VI={0,1,2,3,4,5,6,7,8,9}
 - Nomi di persona: VI={a,b,c, ..., z}
 - Cifra binaria: VI={0,1}
- Uscita una sola variabile: una risposta
- Valori di uscita: saranno {SI, NO}, {Y,N}, o {0,1} ...

L'automa riceve in ingresso sequenze di 0 ed 1 e deve riconoscere, producendo un segnale di OK, le sequenze 010, senza concatenazione

- Es: **010**10 produce un solo OK
- Automa di Mealy:
 - I → Un solo ingresso: carattere
 - **VI** = $\{0,1\}$
 - U → Una sola uscita: risposta
 - VU = {0, 1} (1 = riconosciuta sequenza 010)
 - S = {Stato 0, Stato 1, Stato 2}
 - Stato 0 = "0 caratteri giusti finora"; Stato 1 = "1 carattere giusto finora"; Stato 2 = "2 caratteri giusti finora"

Scrivere le tabelle di transizione e trasformazione di questo automa.

Esercizio/1 soluzioni

Tabella di transizione degli stati

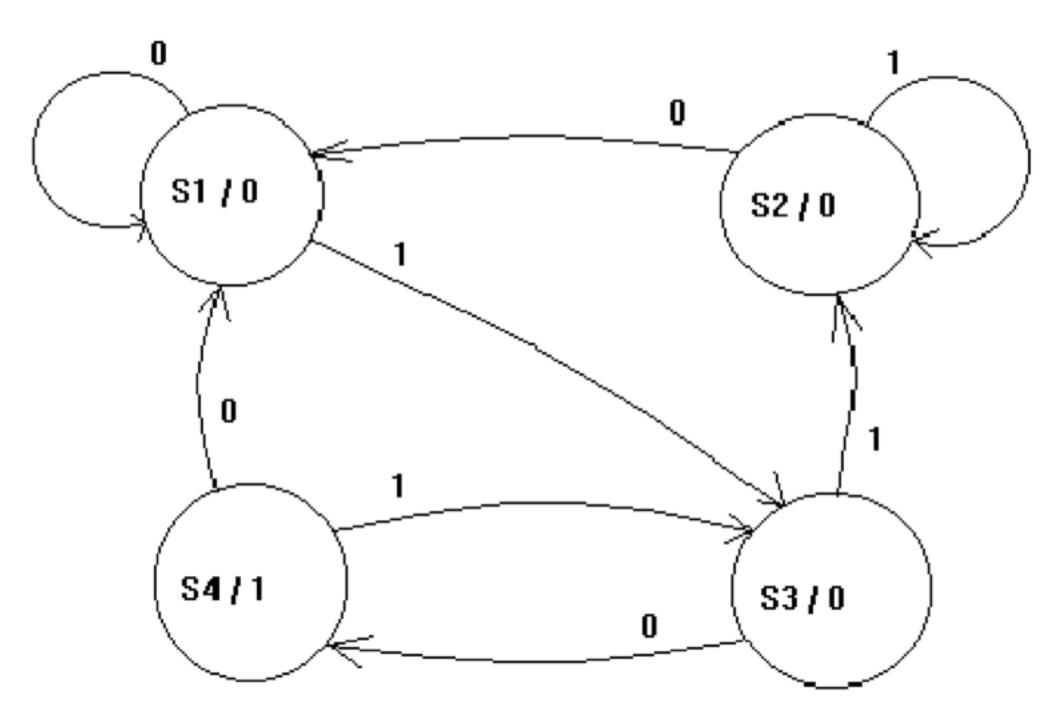

	0	1
S0	S1	S0
S1	S0	S2
S2	S0	S0

Tabella di Trasformazione delle uscite

	0	1
S0	0	0
S1	0	0
S2	1	0

L'automa riceve in ingresso sequenze di 0 ed 1 e deve riconoscere, producendo un segnale di OK, le sequenze 010, con concatenazione

- Es: **010**10 produce due OK
- Automa di Mealy:
 - I → Un solo ingresso: carattere
 - **VI** = $\{0,1\}$
 - U → Una sola uscita: risposta
 - VU = {0, 1} (1 = riconosciuta sequenza 010)
 - S = {Stato 1, Stato 2, Stato 3, Stato 4}

Scrivere le tabelle di transizione e trasformazione di questo automa.

Esercizio/2 Soluzioni

- S2: nessun carattere
- S1: 1 carattere corretto (0)
- S3: 2 caratteri corretti (1)
- S4: 3 caratteri corretti (0)

Esercizio/2 soluzioni

Tabella di transizione degli stati

	0	1
S1	S1	S3
S2	S1	S2
S 3	S4	S2
S4	S1	S3

Tabella di Trasformazione delle uscite

Stato	Uscita
S1	0
S2	0
S3	0
S4	1

Avvisi

- Lunedì 11/2 dedicheremo un ultima ora al ripasso delle codifiche
- Lunedì 18/2 compito codifiche